
JavaScript and Objective-C
Entanglement

BigCatOS.com

2025.04.01

Contents

The Background Palette	
2
Recursive Linear Color Interpolation	
4
The Palette Editor	
8

Obj-C Requests a JS Dictionary	
10
Configuring the Palette Editor	
11
Editing a Background Palette	
15
Obj-C Pushes an NSDictionary to JS	
16
Testing a Background Palette	
17
JS Messages Obj-C	
18

Palette Packaging, HTML, Bootstrapping	
20
Logical Dualities	 23

1

The Background Palette

The effect appears in the opening scene of HOW TO TRAIN YOUR DRAGON. The effect also
appears during the climactic battle in AVATAR: THE WAY OF WATER. No doubt the effect
appears in many other situations — the subtle, practically unnoticeable change in background
lighting over time, whereby the viewer isn’t even aware it’s happening, until it has. And maybe
not even then.

I wanted a similar effect — an imperceptible background color change over time — for a
JavaScript App embedded in an iOS / macOS Objective-C WKWebView, a sim that updates
its state every minute, with a period of 24 hours * 60 minutes / hour = 1440 minutes.

The idea is, given a palette of background colors, spread them over the cycle, with the
understanding that colors must change smoothly and continuously, and the palette is aware
of key times specified in JavaScript variables such as dawn, sunrise, sunset and dusk so
that the palette is pliable and useable throughout the year. Parsing a background palette
should generate a simple array of 1440 elements, indexed by minute 0 - 1439, each with a 9
character JavaScript RGBA hex color value. The App uses its simulated minute to index into
the array and set the background:

 var minuteToBackgroundColor = [] // #00ff00ff

Programmatically, a number of virtual rectangular palette sections delineating a portion of the
day would work, each specifying a starting minute and color (rectangle left edge) and an
ending minute and color (rectangle right edge). The difference between the end minute and
the start minute is the rectangle’s minute distance, which can vary depending on the time of
year. These virtual rectangles do not require a height as only the left-to-right spacing of the
edges along the horizontal time axis is important, but assume their virtual height is at least
one pixel so they are visible, Figure 1.

For example, this array of 6 arrays of 4 scalars describes the palette sections in a hypothetical
day:

 var backgroundPalette = [
 [solarMidnight, “#000000ff", dawn "#3F4174FF"], // 1
 [dawn, "#3F4174FF", sunrise, "#0475FFFF"], // 2
 [sunrise, "#0475FFFF", solarNoon, "#04BAFFFF"], // 3
 [solarNoon, "#04BAFFFF", sunset, "#0475FFFF"], // 4
 [sunset, "#0475FFFF", dusk, "#3F4174FF"], // 5
 [dusk, "#3F4174FF", solarMidnight, "#000000ff"], // 6
]

2

Palette sections are reminiscent of a simple 1-stop color gradient, but no gradients are
involved at this time, only the minute distance between two colors is of interest, used to
smoothly interpolate intermediate colors.

Each entry increases in time except the last, which goes back in time to the first entry thus
completing the daily cycle (think the ends of a thin strip of paper wrapped into a cylinder
without twisting and glued together). Also, the right edge of a palette section rectangle is dual
both in time and color with the left edge of the following palette section. A time-color linked
list, vaguely.

This data structure is usable, it’s simple and was the basis of an early version of dynamic
background colors. It did evolve into a compactified structure that encodes the same
information, while adding a new string keyword for use by the future Palette Editor:

 var backgroundPalette = [
	 	 ["solarMidnight", solarMidnight, "#000000FF"],
	 	 ["dawn", dawn, "#3F4174FF"],
	 	 ["sunrise", sunrise, "#0475FFFF"],
	 	 ["solarNoon", solarNoon, "#04BAFFFF"],
	 	 ["sunset", sunset, "#0475FFFF"],
	 	 ["dusk", dusk, "#3F4174FF"],
]

Do not assume it represents a multi-stop color gradient (even though it can), the rectangle
analogy continues to apply, with a common color between the left and right edges of two
rectangles, and minute distances calculated using two adjacent palette sections.

3

Figure 1

Virtual Palette Rectangles With Virtual Height > 0

Recursive Linear Color Interpolation
Color interpolation can be a complex subject depending on your needs, but this App’s
dynamic background colors feature is relatively minor, mostly in the surprise and delight
category, so simple linear interpolation is sufficient. Turns out its first implementation was a
surprise precisely because it was very undelightful.

Pseudo-code for linearly interpolating the color midway between two hex RGBA color values
#R1G1B1A1 and #R2G2B2A2 is:

 let midCol = ‘#’ + (R1+R2)/2 + (G1+G2)/2 + (B1+B2)/2 + (A1+A2)/2

With appropriate rounding this always works, the new color is linearly in between the start and
end colors, so there is a visually reasonable color path through the three colors.

Generalizing this for many intermediate colors means the common divisor of 2 must be
replaced by the minute distance between the start and end colors, resulting in a color delta
that’s added repeatedly to the beginning color in order to reach the ending color.

But there’s a problem — the generalization is unreliable, sometimes it works, other times we
see banding. Banding produces inappropriate black or repeated colors, and occurs when the
color delta becomes very small and rounds to zero. Also, duplicated colors must be
intelligently distributed throughout the color path, not simply repeated at the end.

A scheme that handles all these problems reuses the technique of finding the midpoint color,
which we know always works, then doing the same thing for the left and right halves of the
interval, until the interval becomes vanishingly small. Although it might feel like taking a limit
in Calculus class, we’ll find all these intermediate colors between the left and right edges of a
virtual palette rectangle using the backgroundPlatte[] array and the recursive function
interpolateColors().

Three program listings follow that demonstrate this color interpolation technique:

• Listing 1 gives preliminary definitions used in the remaining listings.

• Recursion is pretty opaque until you wrap your head around it and realize how amazingly
awesome it is! A recursive function typically contains in its definition instructions that do
stuff, then a call to itself to do similar stuff based upon what it just did. And in order to
keep from crashing by exhausting the system call stack, a recursive function always needs
a way out, a testable condition that can activate a clean exit from the function. Makes
perfect sense, right? As an example, see Listing 2.

• Listing 3 illustrates how to construct virtual palette rectangles from adjacent background
palette array entries and call interpolateColors() on those rectangles.

4

5

1 Define the number of minutes in a day.

2-4 Define the number of hex digits in a color.

5 Compile a regex to extract all the 2 hex-digit pairs that exist in a color string,
and return them as an array. In this App, the array is length kHexLen/2.

6-8
Give mnemonics for the indices of a background palette section array of 3
and what they contain — Palette Editor keyword, name of JS variable
specifying the minute of the day, color string for that minute.

10-16
Implement a background palette section array sort function. This sort
function is a guard in case the background palette entries are not ordered
properly — increasing minute order is required for the algorithms to work.

Listing 1

Preliminaries

6

1
 The function is passed 5 arguments, 4 scalars from 2 background palette
 array entries and a reference to the colors result array
minuteToBackgroundColor[].

3 The number of colors to interpolate between begCol and endCol.

4 Check if this interval is even or odd — odd is how the recursion ends; for an
even interval, e.g. 0-4, there is a precise midpoint, 2, handled by lines 5-15.

5-6 Split the colors into RGBA components and store in arrays of length 4.

7-11
 Perform the actual interpolation and build midCol. Loop — convert the hex
 digits from strings to integers and sum them, find the component’s midway
 value, convert back to a hex string padded with a leading zero if required,

 and suffix the result to midCol.

12-13 Compute the midway minute midMin and store the interpolated color in the
result array.

14-15 Recurse the intervals left and right of midMin and midCol.

17-20
Handle an odd interval — update the interval’s endpoint colors, terminate
recursion if the interval has vanished, else continue recursion starting with a
new, even, interval.

Listing 2 - interpolateColors()

Recursively Find Intermediate Colors

7

3-5
 Initialize — clear the 1440 element array of background colors, sort
 backgroundPalette[] by time, and save the palette array index of the
right edge of the rightmost virtual rectangle. We’ll learn why shortly.

7-15

 Loop — logically construct a virtual palette rectangle using the left edge of
 one palette array of 3, combined the right edge of the next palette array of 3,
 and call interpolateColors(). Each call stores the virtual palette
 rectangle’s minute distance worth of colors in

 minuteToBackgroundcolor[].

17-22

The revised background palette array does not require an explicit final entry
that links back in time and color to the first entry. This code does that
implicitly — minutes before the first palette rectangle, left edge, and after the
last palette rectangle, right edge, where the daily cycle wraps / repeats, are
dual in color.

Listing 3 - setupMinuteToBackgroundColor()

Populate minuteToBackgroundColor[]

The Palette Editor

Instead of repeatedly hacking the App’s source code trying to create a palette that matches
your imagination, a better way is to write a GUI for visualizing and testing a palette. The
Palette Editor (PE), Figure 2, assists by providing these capabilities:

• Open / visualize an existing background palette

• Design a palette

• Test a palette

• Save / package a palette

PE is an Objective-C / AppKit class that talks bi-directionally with the JavaScript App via:

• WebKit messaging using strings

• evaluateJavaScript: using objects and strings

Typically, the item that’s passed back and forth is a backgroundPalette object. When the
direction is JS → Obj-C evaluateJavaScript: translates the JS object to an NSObject. In
the Obj-C → JS direction, PE converts the NSObject to a properly formatted string
representation of the JS object before handing off to evaluateJavaScript:.

NOTE: background palettes are now named (e.g. Earth) and have other associated metadata,
so soon you’ll see a background palette dictionary — of course one of the dictionary’s keys is
@“backgroundPalette”, whose value is a standard background palette array.

8

Figure 2

The Default Palette, Earth

A background palette array has increased in size because there are 4 additional time-color
sections invented just for the App — here is Earth’s new palette:

	 var backgroundPalette = [
	 ["solarMidnight", solarMidnight, "#000000FF"],
	 ["preDawn", preDawn, "#000000FF"],
	 ["dawn", dawn, "#3F4174FF"],
	 ["sunrise", sunrise, "#0475FFFF"],
	 ["postSunrise", postSunrise, "#0475FFFF"],
	 ["solarNoon", solarNoon, "#04BAFFFF"],
	 ["preSunset", preSunset, "#0475FFFF"],
	 ["sunset", sunset, "#0475FFFF"],
	 ["dusk", dusk, "#3F4174FF"],
	 ["postDusk", postDusk, "#000000FF"],
];

10 palette entries corresponding to the 10 circular time marker points in Figure 2, that create 9
virtual palette rectangles. The two, shorter, gray time markers are static and represent the
same minute, they are dual in time.

Each palette rectangle is assigned a color gradient with a single color stop; at the bottom of
the editor is a different rendition of the background palette, this time a single view with a
multi-stop color gradient — all generated from the same background palette array! Because
these CAGradientLayer objects are so similar, PE creates them all from a template gradient,
self.gl0:

	 CAGradientLayer *gl0 = [CAGradientLayer layer];
	 gl0.startPoint = CGPointMake(0.0, 0.5);
	 gl0.endPoint = CGPointMake(1.0, 0.5);
	 gl0.type = kCAGradientLayerAxial;
	 gl0.locations = [NSArray arrayWithObjects:@0.0, @1.0, nil];
	 gl0.borderWidth = 0.5;
	 gl0.cornerRadius = 2;
	 gl0.borderColor = [NSColor whiteColor].CGColor;
	 self.gl0 = [NSKeyedArchiver archivedDataWithRootObject:gl0
	 	 requiringSecureCoding:NO error:nil];

PE maintains two pools of objects that are configured at runtime. self.vpr is an array of
NSView’s that represent virtual palette rectangles, whose initial position and size are
unknown. self.tmv is an array of circular TimeMarkerViews that point to the rectangles’
background palette minute, but whose horizontal position is also unknown.

PE also instantiates NSColorPanel, obviously.

9

Obj-C Requests a JS Dictionary

Before PE can do anything it requests the App’s current background palette, which arrives as
an NSDictionary. The section Palette Packaging, HTML, Bootstrapping fully describes the
dictionary, for now just know that the App maintains a list of several background palettes for
the user to choose from, and that the first slot is reserved for PE testing:

	 let paletteDictionary = {} // a single palette
	 var paletteList = [] // array of paletteDictionary objects
	 paletteList.push({ "paletteName" : "Test" }) // PE test palette

PE calls the JS function fetchBackgroundPalette(), which returns the active palette
dictionary / active background palette array (assumed to be Earth). PE configuration is
finalized in the evaluateJavaScript: completion block:

• Generate the lower gradient view with 10 color stops, plus 1 “wrap” stop. This view
depicts the original unmodified palette and is what the upper, editable, palette reverts to if
Reset is clicked. See Listing 4.

• Reposition the time markers’ x-coordinates to coincide with their minute of the day and
set their fill color. See Listing 5.

• Reposition the 9 virtual palette rectangles’ left edge to match its minute pointer and re-
size its width to its new minute distance. Use 2 additional views to logically “wrap” the
virtual rectangles. Add a 1-stop color gradient to each rectangle. See Listings 6a and 6b.

self.wv is the WkWebView:

	 [self.wv evaluateJavaScript:@“fetchBackgroundPalette ()"
	 	 	 completionHandler:^(NSDictionary *pd, NSError *e) {

	 	 self.backgroundPalette = pd[@"backgroundPalette"];

	 	 [self resetGradientView]; // Listing 4
	 	 [self resetTimeMarkerViews]; // Listing 5
	 	 [self resetPaletteRectangles]; // Listings 6a and 6b

	 }];

	 function fetchBackgroundPalette () {

	 	 paletteDictionary = paletteList[activePaletteOrdinal]
	 	 paletteDictionary["backgroundPalette"] = backgroundPalette
	 	 return paletteDictionary

	 } // fetchBackgroundPalette

When these steps are finished both the upper 9+2 views (each with a 1-stop color gradient),
and lower single view (with a (10+1)-stop color gradient) should be visually dual, and Figure 2
shows they are. Note each background palette rendering is 1440 pixels in width.

10

Configuring the Palette Editor

11

3-4
Define an empty list of colors and their stop locations in the view, left edge
is 0.0, right edge is 1.0. Colors are type CGColor, locations are type
NSNumber.

6-11
Loop — using each background palette entry array of 3, append a new
color to the cols array, and the color’s fractional position along the view to
the locs array.

12-13 Add a final stop at the view’s right edge that wraps the first gradient color
to it.

15-22 Initialize a fresh color gradient object, configure it’s colors and locations,
then add it to the gradient view.

Listing 4 - resetGradientView

One View With 10+1 Gradient Stops

12

3 self.bgpView is the view containing all the virtual palette rectangles.

4-22 Loop — using each background palette entry array of 3, reposition the time
marker and configure it.

6-10 Position the time marker to the left edge of its palette rectangle.

11-17 Set its title, color and tooltip. Hovering over the marker displays its name
and minute.

19-21 Clicking on the time marker prepares its palette rectangle for editing.

Not shown — the two gray markers are positioned at minute coordinates 0
and 1440.

Listing 5 - resetTimeMarkerViews

Configure and Position Time Markers on the Minute Axis

13

Listing 6a - resetPaletteRectangles

9 Views Each With 1 Gradient Stop

 3-8 Initialize — hide all virtual palette rectangles and time markers.

9-32 Loop — unhide a palette rectangle, position and size it, set its gradient.

14-20
A palette section defines a rectangle’s x-coordinate. The rectangle’s width
is the minute distance to the next palette section’s x-coordinate. Even
thought the last rectangle has a width of zero, that’s corrected in the wrap
step, see Listing 6b.

21-30 Configure a new color gradient using colors from the left and right palette
entries.

31 The wrap color linking the leftmost and rightmost palette rectangles. See
Listing 6b.

14

Listing 6b - resetPaletteRectangles

2 Wrap Views Each With 1 Gradient Stop

35-58 Loop — add 2 views to wrap the color joining SolarMidnight with
PostDusk. Analogous to the wrapping in Listing 3, lines 17-22.

36 Grab an unused NSView from the virtual palette rectangle pool.

40-42 The left wrap view, filling minutes 0 to solarMidnight.

44-46 The right wrap view, filling minutes postDusk to 1439.

50-57 Configure a new color gradient with the left and right palette colors.

Editing a Background Palette

To edit the default palette, click a time marker and then select a color — that would make an
edit to the Earth palette. Not to worry, you’re working on a copy of the palette, you haven’t
saved the change to a file or pushed it back to the App.

To edit a different palette use Open, the App has a number of palettes you could choose to
edit. One is Blank, a great palette to begin work on something new, perhaps a simple light
spectrum, that will eventually be named RGB, so go ahead, click on Movie 1, Create RGB
Palette:

Briefly (ignoring wrapping), each time a color is selected it’s applied to both the left view’s
right color and the right view’s left color:

 gradientLayer = (CAGradientLayer *)lv.layer; // left view
 colors = [NSMutableArray arrayWithArray:gradientLayer.colors];
 colors[1] = (id)newColor.CGColor;
 gradientLayer.colors = colors;

 gradientLayer = (CAGradientLayer *)rv.layer; // right view
 colors = [NSMutableArray arrayWithArray:gradientLayer.colors];
 colors[0] = (id)newColor.CGColor;
 gradientLayer.colors = colors;

15

 Movie 1

Create RGB Palette

https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4
https://www.bigcatos.com/BigCatOs/CreateRGB.mp4

Obj-C Pushes an NSDictionary to JS

PE is not in a position to actually test a new background palette, that’s the responsibility of
the App. PE just transmits the new background palette and the sim starts using it
immediately. Of course, sending JS an actual NSDictionary cannot work, but converting it to
a string representation of a JS dictionary can — and that’s exactly what happens. JS then
evals the string-ified JS object to create an actual object.

The JS strings are multi-line for readability, so quoting uses template string backticks. Here’s
what the string-ified JS RGB background palette dictionary looks like (only two keys are
shown, the rest are described in the section Palette Packaging, HTML, Bootstrapping):

	 paletteDictionary = {
	 	 "paletteName" : "RGB",
	 	 "backgroundPalette" : \`backgroundPalette = [
	 	 ["solarMidnight", solarMidnight, "#7F007FFF"],
	 	 ["preDawn", preDawn, "#FB0106FF"],
	 	 ["dawn", dawn, "#FB0106FF"],
	 	 ["sunrise", sunrise, "#FB0106FF"],
	 	 ["postSunrise", postSunrise, "#FEFE0AFF"],
	 	 ["solarNoon", solarNoon, "#21FE06FF"],
	 	 ["preSunset", preSunset, "#20FEFEFF"],
	 	 ["sunset", sunset, "#0000FEFF"],
	 	 ["dusk", dusk, "#0000FEFF"],
	 	 ["postDusk", postDusk, "#7F007FFF"],
]\`,
	 }

Notice the value assigned to its “backgroundPalette” key is a JS array enclosed in
escaped backticks. Assume this string-ified JS dictionary is the value of the Obj-C NSString
variable *pd, then when used as a parameter to testBackgroundPalette() the entire
dictionary is enclosed in non-escaped backticks:

 NSString *js = [NSString
	 	 stringWithFormat:@"testBackgroundPalette(`%@`);", pd];
	 [self.wv evaluateJavaScript:js
 completionHandler:^(id rv, NSError *e) {
	 }];

	 function testBackgroundPalette (newBGPDictionary) {

 	 eval(newBGPDictionary) // create paletteDictionary
 	 activePaletteOrdinal = 0 // reserved slot in paletteList
 	 paletteList[activePaletteOrdinal] = paletteDictionary
 	 eval(paletteDictionary["backgroundPalette"])
 	 setupMinuteToBackgroundColor() // using backgroundPalette

	 } // testBackgroundPalette

16

Testing a Background Palette

In testBackgroundPalette() the first eval() creates an actual JS dictionary named
paletteDictionary{}, which is stored in the paletteList[] array (in its reserved slot)
and made the active palette. Note that this eval() effectively removes the escape
character from the “backgroundPalette” member, in preparation for the second
eval().

The second eval() creates an actual JS array named backgroundPalette[], including
evaluating the JS minute variables, and then setupMinuteToBackgroundColor() is
called (see Listing 3).

The code to place the App is sim mode on the new background palette isn’t shown, it’s not
relevant here — but the test playback is! While testing, the lower PE gradient view is usurped
and used to display the changing background in real-time, so go ahead, click on Movie 2,
Test RGB Palette:

As the animation plays through its simulated minutes, JS sends WebKit messages to Obj-C
with a minute value and its associated background color. PE uses this data to move the
triangular minute pointer and to set the gradient view’s start and stop colors to the color of
the minute. Watch 24 hours of sim-time background color changes compressed to 30 real-
time seconds.

17

Movie 2

Test RGB Palette

https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4
https://www.bigcatos.com/BigCatOs/TestRGB.mp4

JS Messages Obj-C

When the App’s view controller creates the WkWebView it configures a user content controller
that specifies a message name that JS is allowed to invoke. The view controller must also
conform to the <WKScriptMessageHandler> protocol to receive the message:

 WKWebViewConfiguration *config =
 [[WKWebViewConfiguration alloc] init];
 [config.userContentController
 addScriptMessageHandler:self name:@"showTestPalette"];
 self.wv = [[WKWebView alloc] initWithFrame:self.view.frame
 configuration:config];
 [self.view addSubview:self.wv];

The JS simulation Mainloop calls the following function for each simulated minute, which
posts a showTestPalette message to Obj-C, containing a simple “minute=color” string:

	 function updatePaletteEditor(minute) {

	 window.webkit.messageHandlers.showTestPalette.
	 	 	 postMessage(
	 	 	 	 minute + '=' +
	 	 	 	 minuteToBackgroundColor[minute]
)

	 } // updatePaletteEditor

The Obj-C delegate receives the message, verifies it’s name, and forwards the NSString to
PE:

18

And, finally, PE can update its views. If the extra hop from the view controller to PE is
bothersome, think of the alternative: polling, ugh.

	 - (void) showTestPalette:(NSString *)msgBody {

	 	 NSArray *t = [msgBody componentsSeparatedByString: @"="];
	 	 [self movePETriangle:[t[0] integerValue]];
	 	 id c = [self colorFromHexString:t[1]];
	 	 CAGradientLayer *gl = [NSKeyedUnarchiver
	 	 	 unarchivedObjectOfClass: [CALayer class]
	 	 	 	 	 	 fromData: self.gl0
	 	 	 	 	 	 	 error: nil
];
	 	 NSArray *colors = [NSArray arrayWithObjects:c, c, nil];
	 	 gl.colors = colors;
	 	 self.gradientView.layer = gl;

	 } // showTestPalette

19

Palette Packaging, HTML, Bootstrapping
Once testing is complete, clicking the PE Save button writes two JS statements to a file (e.g.
RBG.js) on the host computer’s filesystem, see Listing 7.

20

Listing 7 - RGB.js

A Palette Dictionary Ready for Installation

1-21 Define paletteDictionary{}.

3-14 RGB’s background palette array.

15 Icon-sized image of the palette’s NSViews.

16 Fill color of any lettering painted over the palette view.

19-20 Simulated date and GPS coordinates of palette creation.

22 Append paletteDictionary{} to paletteList[].

Ensure the App has access to RGB.js and source it in the HTML <head> section, after the
background palette declarations but before the App itself:

 <head>

 <!-- Background Palette
	 	 Each .js src is a paletteDictionary{} that pushes itself
	 	 onto paletteList[]. The 0-th palette entry is reserved
	 	 for Palette Editor's test palette.
 -->
 <script>
 let paletteDictionary = {}
 var paletteList = []
 paletteList.push({ "paletteName" : "Test" })
 </script>
 <script type="text/javascript" src=“Earth.js"></script>
 <script type="text/javascript" src=“RGB.js” ></script>
 <!-- Background Palette —>

 <script type="text/javascript" src=“App.js” ></script>

 </head>

Now that the App has a paletteList[] array full of paletteDictionary{} creatures,
simply change:

 backgroundPalette[] = [[…],]

to this:

 activePaletteOrdinal = 1
 paletteDictionary = paletteList[activePaletteOrdinal]
 eval (paletteDictionary["backgroundPalette"])

and the cutover is complete.

21

Elsewhere, the App provides a customization panel that’s generated by iterating
paletteList[] and creating DOM radio buttons on-the-fly from the palette dictionary
metadata “paletteName” and “base64PNG-160x18”. Notice the test palette in slot
zero is skipped:

 // Background palette radio buttons.

 for (n = 1; n < paletteList.length; n++) {
 makeRadiobutton(paletteList[n]);
 }

On a click the App finds the checked radio button’s palette name to get the palette dictionary
and initializes the background colors, as usual:

 pn = document.querySelector('input[type="radio"]:checked').value;
 for (let p = 1; p < paletteList.length; p++) {
 let pd = paletteList[p]
 if (pd["paletteName"] != pn) { continue }
 activePaletteOrdinal = p
 eval (pd["backgroundPalette"])
 setupMinuteToBackgroundColor()
 break
 }

22

Logical Dualities
The background palette is a singleton used by multiple languages for multiple purposes.
Consider the Earth palette, abstractly:

• In the context of the JS App, the background palette describes, visually, a fixed space with
color changing in time. Given any App background space, as you examine a pixel, any pixel,
you see the same color, until there’s a time change — you wait a moment.

• In the context of the Obj-C PE, the background palette describes, visually, a fixed time with
color changing in space. Given virtual palette rectangles with height = 1, as you examine a
pixel, any pixel, you see the same color, until there’s a space change — you shift your gaze.

• The two descriptions are dual, they represent the same object.

• The background palette simultaneously defines one space with a single multi-stop color
gradient, as well as multiple spaces each with a one-stop color gradient.

• By definition, the background palette requires that its rightmost edge identify with its
leftmost edge. This is what has been called wrapping — or the right edge of the palette is
time-color dual with the left edge. This requirement was implemented variously, see Listing
3, Listing 4 and Listing 6b.

• This time-color edge duality creates a virtual background palette that is finite yet unbounded
in time and color.

23

	The Background Palette
	Recursive Linear Color Interpolation
	The Palette Editor
	Obj-C Requests a JS Dictionary
	Configuring the Palette Editor
	Editing a Background Palette
	Obj-C Pushes an NSDictionary to JS
	Testing a Background Palette
	JS Messages Obj-C

	Palette Packaging, HTML, Bootstrapping
	Logical Dualities

